On a problem in extremal graph theory
نویسندگان
چکیده
The number T*(n, k) is the least positive integer such that every graph with n = (*:I) + t vertices (t > 0) and at least T*(n, k) edges contains k mutually vertex-disjoint complete subgraphs S, , S, ,..., Sk where S, has ivertices, I < i Q k. Obviously T*(n, k) > T(n, k), the Turan number of edges for a Ki . It is shown that if n > gkk” then equality holds and that there is c :0 such that for (“:I) < n G (‘:I) + Eke inequality holds. Further T*(n, k) is evaluated when k ’ k,(t).
منابع مشابه
On the extremal total irregularity index of n-vertex trees with fixed maximum degree
In the extension of irregularity indices, Abdo et. al. [1] defined the total irregu-larity of a graph G = (V, E) as irrt(G) = 21 Pu,v∈V (G) du − dv, where du denotesthe vertex degree of a vertex u ∈ V (G). In this paper, we investigate the totalirregularity of trees with bounded maximal degree Δ and state integer linear pro-gramming problem which gives standard information about extremal trees a...
متن کاملSolving a nurse rostering problem considering nurses preferences by graph theory approach
Nurse Rostering Problem (NRP) or the Nurse Scheduling Problem (NSP) is a complex scheduling problem that affects hospital personnel on a daily basis all over the world and is known to be NP-hard.The problem is to decide which members of a team of nurses should be on duty at any time, during a rostering period of, typically, one month.It is very important to efficiently utilize time and effort, ...
متن کاملSelected Topics in the Extremal Graph Theory
Extremal problems in graph theory form a very wide research area. We study the following topics: the metric dimension of circulant graphs, the Wiener index of trees of given diameter, and the degree‐diameter problem for Cayley graphs. All three topics are connected to the study of distances in graphs. We give a short survey on the topics and present several new results.
متن کاملExtremal Graph Theory
3 Third Lecture 11 3.1 Applications of the Zarankiewicz Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 The Turán Problem for Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 The Girth Problem and Moore’s Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Application of Moore’s Bound to Graph Spanners . . . . . . . . . . . ....
متن کاملRational exponents in extremal graph theory
Given a family of graphs H, the extremal number ex(n,H) is the largest m for which there exists a graph with n vertices and m edges containing no graph from the family H as a subgraph. We show that for every rational number r between 1 and 2, there is a family of graphs Hr such that ex(n,Hr) = Θ(n r). This solves a longstanding problem in the area of extremal graph theory.
متن کاملOn Second Geometric-Arithmetic Index of Graphs
The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 23 شماره
صفحات -
تاریخ انتشار 1977